Skip to main content

Featured Post

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

Design an algorithm to find sum of 'N' natural numbers

Problem: Design an algorithm to find sum of 'N' natural numbers between N1 and N2.
Input : Two numbers N1 and N2.
Output: Sum of N natural numbers.

SUM(N1, N2)

[N1 and N2 are two different natural numbers]
If N1> N2 then:
MAX <-- N1
MIN <-- N2
ELSE:
MAX<-- N2
MIN <-- N1
[End of If]
MIN <-- MIN-1 [ to include MIN in sum]
SUM 1 <-- (MIN * (MIN+1))/2
SUM 2 <-- (MAX * (MAX+1))/2
Return SUM2- SUM1
Exit.

In the above algorithm to find the sum of N natural numbers, the formula N(N+1)/2 is used. Instead of a formula, repetitive statements can also be used that run from MIN to MAX with step 1. The algorithm can be re-written as:

II algorithm 

Problem: Design an algorithm to find sum of 'N' natural numbers between N1 and N2.
Input : Two numbers N1 and N2.
Output: Sum of N natural numbers.

SUM(N1, N2)

[N1 and N2 are two different natural numbers]
If N1> N2 then:
MAX <-- N1
MIN <-- N2
ELSE:
MAX<-- N2
MIN <-- N1
[End of If]
SUM <-- 0
Repeat For I= MIN, MIN+1, MIN+2..........MAX
SUM <-- SUM+1
[End of For]
Return SUM
Exit.

Tracing:
Suppose that the above algorithm SUM1 is called with two numbers 23 and 11.
In the If statements 23>11 condition is TRUE, therefore MAX becomes 23 and MIN becomes 11.
Now the loop repeats for 11, 12, 13, 14 up to 23
(I values).
Every time when the loop is repeated I is added to SUM.
So, finally the value of SUM is returned from the algorithm.

Comments

Post a Comment

Popular Post

Polynomial representation using Linked List for Data Structure in 'C'

Polynomial representation using Linked List The linked list can be used to represent a polynomial of any degree. Simply the information field is changed according to the number of variables used in the polynomial. If a single variable is used in the polynomial the information field of the node contains two parts: one for coefficient of variable and the other for degree of variable. Let us consider an example to represent a polynomial using linked list as follows: Polynomial:      3x 3 -4x 2 +2x-9 Linked List: In the above linked list, the external pointer ‘ROOT’ point to the first node of the linked list. The first node of the linked list contains the information about the variable with the highest degree. The first node points to the next node with next lowest degree of the variable. Representation of a polynomial using the linked list is beneficial when the operations on the polynomial like addition and subtractions are performed. The resulting polynomial can also

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

Memory representation of Linked List Data Structures in C Language

                                 Memory representation of Linked List              In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.                Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:       Suppose next node is allocated at an address 506, so the list becomes,   Suppose next node is allocated with an address with an address 10,s the list become, The other way to represent the linked list is as shown below:  In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of