Skip to main content

Expressions and its types used in JAVA

An expressions is composed of one or more operations. The objects of the operation(s) are referred to as operands. The operations are represented by operators. Therefore, operators, constants, and variables are the constituents of expressions.

An Expression in Java is any valid combination of operators, constants, and variables are the constituents of Java tokens. The expression in Java can be of any type
  • Arithmetic expression
  • Compound expression
  • Relational (or logical) expression
Type of operators used in an expression determine the expression type. For instance, if an expression is formed using arithmetic operator, it is an arithmetic expression; if an expression has relational and/or Boolean operators, it is a Boolean expression. An arithmetic expression always results in a number (integer or real) and a logical expression always results in a logical value i.e., either true or false.

Arithmetic Expressions

Expressions and its types used in JAVA

Arithmetic expressions can either be pure integer expressions or pure real expressions. Sometimes a mixed expression can also be formed which is a mixture of real and integer expressions.
In pure expressions, all the operands are of same type. And in mixed expressions, the operands are of mixed or different data types.
Integer expressions are formed by connecting integer constants and/or integer variables using integer arithmetic operators.  The following are valid integer expression:

final int count = 30
int I, J, K, X, Y, Z
– J, K – X, K + X – Y + count, – J + K * Y, J/Z, Z % X

Real expression are formed by connecting real constants and/or real variables using real arithmetic operators. The following are valid real expression:

final float bal = 250.3f:
float qty, amount value;
double fin, inter;

Rule for these arithmetic expressions is the same and it states that:
An arithmetic expression may contain just one numeric variable or a constant, or it may have two or more variables or/and constants, or two or more expressions joined by valid arithmetic operators. Two or more variables or operators should not occur in continuation.

Apart from variables, constants and arithmetic operators, an arithmetic expression may consist of Java’s mathematical functions that are part of Java standard library and are available through Math class defined in java.lang package. The following image lists various math functions that are defined in the Math class of Java.lang package.

You can use these math functions as per following syntax:
Math.Function_name (argument list) ---- The arguments are the values required by a function to work upon. For example, to calculate ab, you may write: math.pow(a, b)

Following are examples of valid arithmetic expressions :
Given     int a, b, c ;  float, p, q, r ; double x, y, z ;
a/b, p/q +a-c, x/y + p*a/b, Math .sqrt (b)*a) – c, Math.ceil (p) + a)/c, Math. Max (c,b) +x/y – z/q +c  

Following are example of invalid arithmetic expressions :
Given int , a, b, c ;  float, p, q, r ;   double x, y, z ;
x + * r      two operators on continuation.
q(a + b – z/4)   operator missing between q and parenthesis.
Math.pow (0, - 1)  Domain error because if base = 0 then exp should not be <= 0.
n *log (-3) + p/q  Domain error because logarithm of negative number is not possible.

Comments

Popular posts from this blog

difference between structure and union in C Language

In c language article we will see the difference between union and structure. Both are the user define datatype in c language. See the table which is mentioned below: ASP.NET Video Tutorial Series Structure Union1.The keywordstruct is used to define a structure 1. The keyword union is used to define a union. 2. When a variable is associated with a structure, the compiler allocates the memory for each member. The size of structure is greater than or equal to the sum ofsizes of its members. The smaller members may end with unused slack bytes. 2. When a variable is associated with a union, thecompiler allocates thememory by considering the size of the largest memory. So, size of union is equal to the size of largest member. 3. Each member within a structure is assigned unique storage area of location. 3. Memory allocated is shared by individual members of union. 4. The address of each member will be in ascending order This indicates that memory for each member will start at different offset v…

Difference between Linear search and Binary Search in c language

SQL Video Channel : Download all SQL Video



Binary Search Linear Search Works only on sorted items. such as  1,2,3,4,5,6  etc
Works on sorted as well as unsorted items. 12,4,5,3,2,1 etc Very efficient if the items are sorted Very efficient if the items are less and present in the beginning of the list. such as Suppose your list items are : 12,3,4,5,1 and you want to search 12 number then you get beginning in the list. Works well with arrays and not on linked lists. Works with arrays and linked lists.
Number of comparisons are less More number of comparisons are required if the items are present in the later part of the array or its elements are more.

Memory representation of Linked List Data Structures in C Language

Memory representation of Linked List

             In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.

               Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:


      Suppose next node is allocated at an address 506, so the list becomes,



  Suppose next node is allocated with an address with an address 10,s the list become,


The other way to represent the linked list is as shown below:




 In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of next node. The last node …