Skip to main content

Null Statement and Character Manipulation in JAVA

In Java programs, statements are terminated with a semicolon (;). The simplest statement of them all is the empty, or null statement.
; it is a null statement

A null statement is useful in those instances where the syntax of the language requires the presence of a statement but where the logic of the program does not. We will see it in loops and their bodies.

Character Manipulation

Consider the following code. What does it print?
System.out.print(“H” + “a”);
System.out.print(‘H’ + ‘a’);

Aren’t you thinking that it would produce output as:    HaHa
But if you the program, you’ll find that the output produced is:    Ha169

As expected, the first call to System.out.print prints Ha. Its argument is the expression “H” + “a”, which performs the obvious string concatenation.
The second call to system.out.print is another story. Its argument is the expression ‘H’ + ‘a’. The problem is that ‘H’ and ‘a’ are char literals. Because neither operand is of type string, the + operator performs addition rather than string concatenation. Thus it adds ‘H”s value i.e. 72 and ‘a”s value I.e. 97 and gives 169. (A-Z have values 65-90; a-z have values 97-122).
You can force the + operator to perform string concatenation rather than addition by ensuring that at least one of its operands is a string. The common idiom is to begin a sequence of concatenations with the empty string (“ “), as follows:
    System.out.print(“ “ + ‘H’ + ‘a’) ;

But this approach can lead to some confusions also. Can you guess what the following statement prints?
    System.out.println(“2 + 2 = “ + 2 + 2);

Yes, you are right. It produces:    2 + 2 = 22
To perform the addition of expression 2+2 shown above, you need to convert it to Expression by enclosing it in parenthesis i.e. as
(2+2): System.Out.Println(“2+2 = ”+ (2+2));
The + operator performs string concatenation if and only If at least one of its operands is of type string: otherwise, it performs addition with primitive types.


Popular posts from this blog

difference between structure and union in C Language

In c language article we will see the difference between union and structure. Both are the user define datatype in c language. See the table which is mentioned below: ASP.NET Video Tutorial Series Structure Union1.The keywordstruct is used to define a structure 1. The keyword union is used to define a union. 2. When a variable is associated with a structure, the compiler allocates the memory for each member. The size of structure is greater than or equal to the sum ofsizes of its members. The smaller members may end with unused slack bytes. 2. When a variable is associated with a union, thecompiler allocates thememory by considering the size of the largest memory. So, size of union is equal to the size of largest member. 3. Each member within a structure is assigned unique storage area of location. 3. Memory allocated is shared by individual members of union. 4. The address of each member will be in ascending order This indicates that memory for each member will start at different offset v…

Difference between Linear search and Binary Search in c language

SQL Video Channel : Download all SQL Video

Binary Search Linear Search Works only on sorted items. such as  1,2,3,4,5,6  etc
Works on sorted as well as unsorted items. 12,4,5,3,2,1 etc Very efficient if the items are sorted Very efficient if the items are less and present in the beginning of the list. such as Suppose your list items are : 12,3,4,5,1 and you want to search 12 number then you get beginning in the list. Works well with arrays and not on linked lists. Works with arrays and linked lists.
Number of comparisons are less More number of comparisons are required if the items are present in the later part of the array or its elements are more.

Memory representation of Linked List Data Structures in C Language

Memory representation of Linked List

             In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.

               Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:

      Suppose next node is allocated at an address 506, so the list becomes,

  Suppose next node is allocated with an address with an address 10,s the list become,

The other way to represent the linked list is as shown below:

 In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of next node. The last node …