Skip to main content

Featured Post

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

Type of Statements used in JAVA

Statements are roughly equivalent to sentences in natural languages. A statement forms a complete unit of execution. The following types of expressions can be made into a statement by terminating the expression with a semicolon ( ; )
  • Assignment expressions
  • Any use of ++ or - -
  • Method calls
  • Object creation expressions
These kinds of statement are called expression statement. Here are some example of expression statements :

Avalue = 8933.234;                                          // assignment statement
Avalue++ ;                                                        // increment statement
System . out . println (avalue);                         // method call statement
Integer integerobject = new integer (4);           // object creation statement

In addition to these kinds of expression statements, there are two other kinds of statements. A declaration statement declares a variable. You’ve seen many examples of declaration statement.
Double avalue = 8933.234;            // declaration statement

A control flow statement regulates the order in which statements get executed. For loop and  if statements are both examples of control flow statements.

Block

A block is group of zero or more statements between balanced braces and can be used anywhere a single statement is allowed. The following listing shows two blocks.
If  (character . I suppercase(achar))
{
    Labe l1 . settext (“the character” + achar + “is upper case .”) ;
}
Else
{
    Labe l1. Settext (“the character” + achar + “is lower case .”) ;
    Label2. Settext(“thank you”) ;
}

Character.isLowerCase( )    tests whether a character is in lowercase.
Character.isUpperCase( )        tests whether a character is in uppercase.
Character.toLowerCase( )        converts the case of a character to lowercase
Character.toUpperCase( )        converts the case of a character to uppercase


First Block:
 If (character.isUpperCase(achar))
{            // block1 begins
    Label1.Settext (“ The character “ + achar + “ is upper case.”) ;
}            // end of block 1
Else
 
Another Block:
{            // block2 begins
Label1.Settext(“ The character “ + achar + “ is lower case . “) ;
}            // end of block2

See, the beginning and end of blocks have been marked.
A Block is a group of zero or more statements between balanced braces and can be used anywhere a single statement is allowed.
In this book, we shall be following conventional style where opening brace of the block is not put in a separate line, rather it is placed in continuation with the previous statement (whose part the block is).
For instance, rather than showing
If (a > b) { : }
We shall be writing
If (a > b)   {     :  }
Opening brace of the block in continuation with previous statement

Comments

Popular Post

Polynomial representation using Linked List for Data Structure in 'C'

Polynomial representation using Linked List The linked list can be used to represent a polynomial of any degree. Simply the information field is changed according to the number of variables used in the polynomial. If a single variable is used in the polynomial the information field of the node contains two parts: one for coefficient of variable and the other for degree of variable. Let us consider an example to represent a polynomial using linked list as follows: Polynomial:      3x 3 -4x 2 +2x-9 Linked List: In the above linked list, the external pointer ‘ROOT’ point to the first node of the linked list. The first node of the linked list contains the information about the variable with the highest degree. The first node points to the next node with next lowest degree of the variable. Representation of a polynomial using the linked list is beneficial when the operations on the polynomial like addition and subtractions are performed. The resulting polynomial can also

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

Memory representation of Linked List Data Structures in C Language

                                 Memory representation of Linked List              In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.                Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:       Suppose next node is allocated at an address 506, so the list becomes,   Suppose next node is allocated with an address with an address 10,s the list become, The other way to represent the linked list is as shown below:  In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of