Skip to main content

Types of XML Indexes used in SQL Server: Speed up Execution

When a query is based on an XML column, the query processor needs to parse the XML data each time the query is executed. In SQL Server, and XML data value can be of a maximum of two gigabytes (GB).

Therefore, the XML values can be very large and the server might take time to generate the result set. To speed up the execution of the query based on the XML data type, SQL Server allows you to create an index that is based on columns storing XML data values. Such indexes are called XML indexes.

Primary XML Index

This is a clustered B-Tree representation of the nodes in the XML data. When an index is created on a column with the XML data type, an entry will be created for all the nodes in the XML data. Therefore, the index creates several rows of data for each XML value in the column.

You can create XML indexes on XML columns by using the CREATE PRIMARY XML INDEX and CREATE XML INDEX T-SQL commands. For example, the ProductModel table contains the CatalogDescription column that stores XML values. You can create a primary XML index on this column by using the following statement:

CREATE PRIMARY XML INDEX PXML_ProductModel_CatalogDesctiption ON Production.ProductModel (CatalogDescription)

The preceding statement will create an index for all the nodes in the XML data stored in the CatalogDescription column.

Secondary XML Index

This is a non-clustered index of the primary XML index. A primary XML index must exist before any secondary index can be created. After you have created the primary XML index, an additional three kinds of secondary XML indexes can be defined on the table. The secondary XML indexes assist in the XQuery processing.

The three types of secondary XML indexes are:


Popular posts from this blog

difference between structure and union in C Language

In c language article we will see the difference between union and structure. Both are the user define datatype in c language. See the table which is mentioned below: ASP.NET Video Tutorial Series Structure Union1.The keywordstruct is used to define a structure 1. The keyword union is used to define a union. 2. When a variable is associated with a structure, the compiler allocates the memory for each member. The size of structure is greater than or equal to the sum ofsizes of its members. The smaller members may end with unused slack bytes. 2. When a variable is associated with a union, thecompiler allocates thememory by considering the size of the largest memory. So, size of union is equal to the size of largest member. 3. Each member within a structure is assigned unique storage area of location. 3. Memory allocated is shared by individual members of union. 4. The address of each member will be in ascending order This indicates that memory for each member will start at different offset v…

Difference between Linear search and Binary Search in c language

SQL Video Channel : Download all SQL Video

Binary Search Linear Search Works only on sorted items. such as  1,2,3,4,5,6  etc
Works on sorted as well as unsorted items. 12,4,5,3,2,1 etc Very efficient if the items are sorted Very efficient if the items are less and present in the beginning of the list. such as Suppose your list items are : 12,3,4,5,1 and you want to search 12 number then you get beginning in the list. Works well with arrays and not on linked lists. Works with arrays and linked lists.
Number of comparisons are less More number of comparisons are required if the items are present in the later part of the array or its elements are more.

Memory representation of Linked List Data Structures in C Language

Memory representation of Linked List

             In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.

               Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:

      Suppose next node is allocated at an address 506, so the list becomes,

  Suppose next node is allocated with an address with an address 10,s the list become,

The other way to represent the linked list is as shown below:

 In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of next node. The last node …