Skip to main content

Featured Post

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

Execute Batches multiple times using Stored Procedures in SQL

Batches are temporary in nature. To execute a batch more than once, you need to recreate SQL statements and submit them to the server. This leads to an increase in the overhead, as the server needs to compile and create the execution plan for these statements again. Therefore, if you need to execute a batch multiple times, you can save it within a stored procedure. A stored procedure is a precompiled object stored in the database.

Stored procedures can invoke the Data Definition Language (DDL) and Data Manipulation Language (DML) statements and can return values. If you need to assign values to the variables declared in the procedures at the run time, you can pass parameters while executing them. You can also execute a procedure from another procedure. This helps in using the functionality of the called procedure within the calling procedure.

Creating Stored Procedures

You can create a stored procedure by using the CREATE PROCEDURE statement. The syntax of the CREATE PROCEDURE statement is:
CREATE PROCEDURE proc_name
AS
BEGIN
Sql_statement1
Sql_statement2
END
Where Proc_name specifies the name of the stored procedure.

The following example create a stored procedure to view the department names from the Department table:
CREATE PROCEDURE prcDept
AS
BEGIN
SELECT Name FROM HumanResources.Department
END
When the CREATE PROCEDURE statement is executed, the server compiles the procedure and saves it as a database object. The procedure is then available for various applications to execute. The process of compiling a stored procedure involves the following steps:

  • The procedure is compiled and its components are broken into various pieces. This process is known as parsing.
  • The existence of the referred objects, such as tables and views, are checked. This process is known as resolving.
  • The name of the procedure is stored in the sysobjects table and the code that creates the stored procedure is stored in the syscomments table.
  • The procedure is compiled and a blueprint for how the query will run is created. This blueprint is specified as execution plan. The execution plan is saved in the procedure cache.
  • When the procedure is executed for the first time. The execution plan will be read and fully optimized and then run. The net time the procedure is executed in the same session, it will be read directly from the cache. This increases performance, as there is no repeated compilation.

After creating the stored procedure, you can view the code of the procedure by using the sp_helptext command.

Comments

Popular Post

Polynomial representation using Linked List for Data Structure in 'C'

Polynomial representation using Linked List The linked list can be used to represent a polynomial of any degree. Simply the information field is changed according to the number of variables used in the polynomial. If a single variable is used in the polynomial the information field of the node contains two parts: one for coefficient of variable and the other for degree of variable. Let us consider an example to represent a polynomial using linked list as follows: Polynomial:      3x 3 -4x 2 +2x-9 Linked List: In the above linked list, the external pointer ‘ROOT’ point to the first node of the linked list. The first node of the linked list contains the information about the variable with the highest degree. The first node points to the next node with next lowest degree of the variable. Representation of a polynomial using the linked list is beneficial when the operations on the polynomial like addition and subtractions are performed. The resulting polynomial can also

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

Memory representation of Linked List Data Structures in C Language

                                 Memory representation of Linked List              In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.                Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:       Suppose next node is allocated at an address 506, so the list becomes,   Suppose next node is allocated with an address with an address 10,s the list become, The other way to represent the linked list is as shown below:  In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of