Skip to main content

Featured Post

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

How to Store Data from Rowset: SQL

Programmer can use the rowset created by openxml to store the data, in the same way that you would use any other rowset. You can insert the rowset data into permanent tables in a database. For example, you can insert the data received by a supplier in the XML format into the SalesOrderHeader and SalesOrderDetail tables.

Clearing the Memory

After saving the data permanently in the database, you need to release the memory where you stored the rowset. For this, you can use the sp_xml_removedocument stored procedure.
Consider an example where customers shop online and the order given by the customers are transferred to the supplier in the form of an XML document. Following is the data available in the XML document:

DECLARE @Doc int
DECLARE @XMLDoc nvarchar (1000)
SET @XMLDoc = N’ <ROOT>
<Customer CustomerID=”JH01” ContactName=”John Henriot”>
<Order OrderID=”1001 CustomerID=”JH01”
<OrderDate=”2006-07-04T00:00:00”>
<OrderDetail ProductID=”11” Quantity=”12”/>
<OrderDetail ProductID=”22” Quantity=”10”/>
<Order>
</Customer>
<Customer CustormerID=”SG01” ContactName=”Steve Gonzlez”>
<Order OrderID=”1002” CustomerID=”SG01”
OrderDate=”2006-08-16T00:00:00”>
<OrderDetail ProductID=”32” Quantity=”3”/>
</Order>
</Customer>
</ROOT>’

To view this XML data in a rowset, you need to execute the following statements:

  • Create an internal representation of the XML document by executing the following statement:
    EXEC sp_xml_preparedocumnt @Doc OUTPUT, @XMLDoc
  • Execute the following query to store the data in a table by using the OPENXML function:
    INSERT INTO CustomerDetails
    SELECT *
    FROM openxml (@Doc, ‘/ROOT/Customer’, 1)
    WITH (CustomerID varchar (10), ContactName varchar (20) )

The data that will be displayed as shown in the following table.
CustomerID ContactName
JH01 John Henriot
SG01 Steve Gonzlez

  • Remove the internal tree from the memory by executing the following statement:
    EXEC sp_xml_removedocument @Doc

You can also specify the column pattern to map the rowset columns and the XML attributes and elements. You can use the following OPENXML statement with the preceding statements to specify the column pattern:

SELECT *
FROM openxml (@Doc, ‘/ROOT/Customer/Order/OrderDetail’,1)
WITH (CustomerID varchar (10) ‘../../@CustomerID’,
ContactName vchar (20)’../../@ContactName’, OrderID int ‘../@OrderID’,
OrderDate datetime ‘ ../@OrderDate’, ProdID int ‘@ProductID’, Quality int)

Comments

Popular Post

Polynomial representation using Linked List for Data Structure in 'C'

Polynomial representation using Linked List The linked list can be used to represent a polynomial of any degree. Simply the information field is changed according to the number of variables used in the polynomial. If a single variable is used in the polynomial the information field of the node contains two parts: one for coefficient of variable and the other for degree of variable. Let us consider an example to represent a polynomial using linked list as follows: Polynomial:      3x 3 -4x 2 +2x-9 Linked List: In the above linked list, the external pointer ‘ROOT’ point to the first node of the linked list. The first node of the linked list contains the information about the variable with the highest degree. The first node points to the next node with next lowest degree of the variable. Representation of a polynomial using the linked list is beneficial when the operations on the polynomial like addition and subtractions are performed. The resulting polynomial can also

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

Memory representation of Linked List Data Structures in C Language

                                 Memory representation of Linked List              In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.                Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:       Suppose next node is allocated at an address 506, so the list becomes,   Suppose next node is allocated with an address with an address 10,s the list become, The other way to represent the linked list is as shown below:  In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of