Skip to main content

Type Conversion and its Types used in JAVA

An implicit type conversion is a conversion performed by the compiler without programmer’s intervention. An implicit conversion is applied generally whenever differing data types are intermixed in an expression (mixed mode expression), so as not to lose information.

The Java compiler converts all operands up to the type of the largest operand, which is called type promotion. This is done operation by operation, as described in the following type conversion rules
If either operand is of type double, the other is converted to double.

  • Otherwise, if either operand is of type float, the other is converted to float.
  • Otherwise, if either operand is of type long, the other is converted to long.
  • Otherwise, both operands are converted to type int.

Once these conversion rules have been applied, each pair of operands is of same type and the result of each operation is the same as the type of both operands.
The implicit type conversion wherein datatypes are promoted is known as Coercion.
Although coercion exempts the user from worrying about different datatype of operands, yet it has one disadvantage. Coercions decrease the type error detection ability of the compiler. You have already used the implicit type conversion unknowingly. Recall that you use “ “ + <number> (e.g., “ “ +5) to convert it to string.

Explicit type conversion

An explicit type conversion is user-defined that forces an expression to be specific type. The explicit conversion of an operand to a specific Type Casting. Type casting in Java is done as shown below :

(type) expression Where type is a valid Java data type to which the conversion is to be done. For example, to make sure that the expression (x + y/2) evaluates to type float, write it as: (float) (x +y /2)

Casts are often considered as operators. As an operators, a cast is unary and has the same precedence as any other unary operator.

Below is a table that indicates to which of the other primitive types a given primitive data type can be cast. The symbol C indicates that an explicit cast is required since the precision is decreasing. The symbol A indicates that the precision is increasing so an automatic cast occurs without the need for an explicit cast. N indicates that the conversion is not allowed.

Type Conversion and its Types used in JAVA

The * asterisk indicates that the least significant digits, may be lost in the conversion even though the target type allows for bigger numbers. For example, a large value in an int type value that uses all 32 bits will lose some of the lower bits when converted to float since the exponent uses 8 bits of the 32 provided for float value.

Assigning a value to a type with a greater range (e.g. from short to long) poses no problem, however, assigning a value of larger data type to a smaller data type (e.g., from double to float) may result in losing some precision.
Programmer cannot typecast a Boolean type to another primitive type and viceversa. So, we cannot cast a primitive type to an object reference, or viceversa.  


Popular posts from this blog

difference between structure and union in C Language

In c language article we will see the difference between union and structure. Both are the user define datatype in c language. See the table which is mentioned below: ASP.NET Video Tutorial Series Structure Union1.The keywordstruct is used to define a structure 1. The keyword union is used to define a union. 2. When a variable is associated with a structure, the compiler allocates the memory for each member. The size of structure is greater than or equal to the sum ofsizes of its members. The smaller members may end with unused slack bytes. 2. When a variable is associated with a union, thecompiler allocates thememory by considering the size of the largest memory. So, size of union is equal to the size of largest member. 3. Each member within a structure is assigned unique storage area of location. 3. Memory allocated is shared by individual members of union. 4. The address of each member will be in ascending order This indicates that memory for each member will start at different offset v…

Difference between Linear search and Binary Search in c language

SQL Video Channel : Download all SQL Video

Binary Search Linear Search Works only on sorted items. such as  1,2,3,4,5,6  etc
Works on sorted as well as unsorted items. 12,4,5,3,2,1 etc Very efficient if the items are sorted Very efficient if the items are less and present in the beginning of the list. such as Suppose your list items are : 12,3,4,5,1 and you want to search 12 number then you get beginning in the list. Works well with arrays and not on linked lists. Works with arrays and linked lists.
Number of comparisons are less More number of comparisons are required if the items are present in the later part of the array or its elements are more.

Memory representation of Linked List Data Structures in C Language

Memory representation of Linked List

             In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.

               Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:

      Suppose next node is allocated at an address 506, so the list becomes,

  Suppose next node is allocated with an address with an address 10,s the list become,

The other way to represent the linked list is as shown below:

 In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of next node. The last node …