Skip to main content

How to Implement User Defined Function in SQL

Similar to the stored procedures, you can also create functions to store a set of T-SQL statements permanently. These functions are also referred to as user-defined functions (UDFs). A UDF is a database object that contains a set of T-SQL statements, accepts parameters, performs an action, and returns the result of that action as a value. The return value can either be a single scalar value or a result set.

UDFs have a limited scope as compared to stored procedures. You can create functions in situations when you need to implement a programming logic that does not involve any permanent changes to the database objects outside the function. For example, you cannot modify a database table from a function.

UDFs are of different types: scalar functions and table-valued function. As a database developer, it is important for you to learn to create and manage different types of UDFs.

Creating UDFs

A UDF contains the following components:

  • Function name with optional schema/owner name
  • Input parameter name and data type
  • Options applicable to the input parameter
  • Return parameter data type and optional name
  • Options applicable to the return parameter
  • One or more T-SQL statements

To create a function, you can use th CREATE FUNCTION statement. The syntax of the CREATE FUNCTION statement is:

CREATE FUNCTION [ schema_name. ] function_name
( [ { @parameter_name [AS ] [ type_schema_name. ]
Parameter_data_type] }
[ = default ] }
[, …n ]
RETURNS return_data_type
[WITH <function_option> [ , . . .n ] ]
[ AS ]
RETURN expression

  • Schema_name is the name of the schema to which the UDF belongs.
  • Function_name is the name of the UDF. Function names must comply with the rules for identifiers and must be unique within the database and to its schema.
  • @parameter_name is a parameter in the UDF. One or more parameters can be declared.
  • [type_schema_name.] parameter_data_type is the data type of the parameter, and optionally the schema to which it belongs.
  • [=default ] is a default value for the parameter.
  • Return_data_type is the return value of a scalar user-defined function.


Popular posts from this blog

difference between structure and union in C Language

In c language article we will see the difference between union and structure. Both are the user define datatype in c language. See the table which is mentioned below: ASP.NET Video Tutorial Series Structure Union1.The keywordstruct is used to define a structure 1. The keyword union is used to define a union. 2. When a variable is associated with a structure, the compiler allocates the memory for each member. The size of structure is greater than or equal to the sum ofsizes of its members. The smaller members may end with unused slack bytes. 2. When a variable is associated with a union, thecompiler allocates thememory by considering the size of the largest memory. So, size of union is equal to the size of largest member. 3. Each member within a structure is assigned unique storage area of location. 3. Memory allocated is shared by individual members of union. 4. The address of each member will be in ascending order This indicates that memory for each member will start at different offset v…

Difference between Linear search and Binary Search in c language

SQL Video Channel : Download all SQL Video

Binary Search Linear Search Works only on sorted items. such as  1,2,3,4,5,6  etc
Works on sorted as well as unsorted items. 12,4,5,3,2,1 etc Very efficient if the items are sorted Very efficient if the items are less and present in the beginning of the list. such as Suppose your list items are : 12,3,4,5,1 and you want to search 12 number then you get beginning in the list. Works well with arrays and not on linked lists. Works with arrays and linked lists.
Number of comparisons are less More number of comparisons are required if the items are present in the later part of the array or its elements are more.

Memory representation of Linked List Data Structures in C Language

Memory representation of Linked List

             In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.

               Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:

      Suppose next node is allocated at an address 506, so the list becomes,

  Suppose next node is allocated with an address with an address 10,s the list become,

The other way to represent the linked list is as shown below:

 In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of next node. The last node …