Skip to main content

Featured Post

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

Creating Table-Valued Functions in SQL

A table-valued function returns a table as an output, which can be derived as a part of a SELECT statement. Table-valued function return the output as a table data type. The table data is a special data type used to store a set of rows, which return the result set of a table-valued function. Table-valued functions are of two types:

Inline Table-Valued Function

An inline table-valued function returns a variable of a table data type from the result set of a single SELECT statement. An inline function does not contain a function body within the BEGIN and END statements.

Consider an example where the inline table-valued function, fx_Department_GName, accepts a group name as parameter and returns the details of the departments that belong to the group from the Department table. You can create the function by using the following statement:

CREATE FUNCTION fx_Department_GName ( @GrName nvarchar (20) )
RETURNS table
AS
RETURN (
SELECT *
FROM HumanResources.Department
WHERE GroupName=@GrName
)
GO

You can use the following statement to execute the fx_Department_Gname function with a specified argument:

SELECT * FROM fx_Department_GName (‘Manufacturing’)

The preceding statement will return a result set having the group name ‘Manufacturing’.

Consider another example of an inline function that accepts rate a a parameter and returns all the records that have a rate value greater than the parameter value:

CREATE FUNCTION HumanResources.Emp_Pay (@Rate int)
RETURNS table
AS
RETURN (
SELECT e.EmployeeID, e.Title, er.Rate
FROM HumanResources.Employee AS e
JOIN HumanResources.EmployeePayHistory AS er
ON e.EmployeeID=er.EmployeeID WHERE er.Rate<@Rate
)
GO
The preceding function will return a result set that displays all the records of the employees who have the pay rate greater that the parameter.

Multistatement Table-Valued Function

A Multistatement table-valued function uses multiple statements to build the table that is returned to the calling statement. The function body contains a BEGIN…END block, which holds a series of T-SQL statements to build and insert rows into a temporary table. The temporary table is returned in the result set and is created based on the specification mentioned in the function.

Consider an example where the Multistatement table-valued function, PayRate, is created to return a set of records from the EmployeePayHistory table by using the following statements:

CREATE FUNCTION PayRate (@rate money)
RETURNS @table TABLE
(EmployeeID int NOT NULL,
RateChangeDate datetime NOT NULL,
Rate money NOT NULL,
PayFrequency tinyint NOT NULL,
modifiedDate datatime NOT NULL)
AS
BEGIN
INSERT @table
SELECT *
FROM HumanResources.EmployeePayHistory
WHERE Rate > @rate
RETURN
END

The function returns a result set in from of a temporary table, @table, created within the function. You can execute the function by using the following statement:

SELECT * FROM PayRate (45)

Depending on the result set returned by a function can be categorized as deterministic or nondeterministic. Deterministic functions always return the same result whenever they are called with a specific set of input values. However, nondeterministic function may return different results each time they are called with a specific set of input values.
An example of a deterministic function is date add, which returns the same result for any given set of argument values for its three parameters. Get date is a nondeterministic function because it is always invoked without any argument, but the return value changes on every execution.


Comments

Popular Post

Polynomial representation using Linked List for Data Structure in 'C'

Polynomial representation using Linked List The linked list can be used to represent a polynomial of any degree. Simply the information field is changed according to the number of variables used in the polynomial. If a single variable is used in the polynomial the information field of the node contains two parts: one for coefficient of variable and the other for degree of variable. Let us consider an example to represent a polynomial using linked list as follows: Polynomial:      3x 3 -4x 2 +2x-9 Linked List: In the above linked list, the external pointer ‘ROOT’ point to the first node of the linked list. The first node of the linked list contains the information about the variable with the highest degree. The first node points to the next node with next lowest degree of the variable. Representation of a polynomial using the linked list is beneficial when the operations on the polynomial like addition and subtractions are performed. The resulting polynomial can also

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

Memory representation of Linked List Data Structures in C Language

                                 Memory representation of Linked List              In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.                Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:       Suppose next node is allocated at an address 506, so the list becomes,   Suppose next node is allocated with an address with an address 10,s the list become, The other way to represent the linked list is as shown below:  In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of