Skip to main content

Returns Radio Button Input element using Html.RadioButton() handler: MVC

Html.RadioButton() handler, used to return radio button input element to be input true or false value by user. Checked radio button will return true and un-checked will return false, otherwise it returns null to store/use the value.

Html.RadioButton() handler method is used to present mutually exclusive option i.e. true of false. Using this radiobutton method makes it easy to bind to view data or model is so easy in compare to using simple input radio element. This handler provides mostly same features as Html.CheckBox() handler discussed earlier.

Parameters


  • htmlHelper: specify html helper instance that this method extends.
  • name: specify name of input element used to access the value in controller.
  • value: specify value of radio button element. If none is assigned then this attribute is used to access the value.
  • isChecked: to be set true of false for radio button. True to select the element, OW false.
  • htmlAttributes: specify an object that contains html attributes to set for the element.
     e.g Html.RadioButton(“gender”)

Html.RadioButtonFor(…)

Having the same functionality as Html.RadioButton() but it returns radio button element for each property passed via the model from controller’s action. This handler have two types of type parameters i.e. TModel (specify type of model) and TProperty (specify type of value).

Parameters

  • htmlHelper: specify html helper instance that this method extends.
  • expression: used to identifies object containing the property to render.
  • value: specify value of radio button element. If none is assigned then this attribute is used to access the value.
  • htmlAttributes: specify an object that contains html attributes to set for the element.

e.g Html.RadioButtonFor(model=>model.Gender)

Render radio button input for the property gender passed via controller. Submitting form will assign the value of this radio button to model’s gender property to be accessed in the controller’s action.

Comments

Popular posts from this blog

difference between structure and union in C Language

In c language article we will see the difference between union and structure. Both are the user define datatype in c language. See the table which is mentioned below: ASP.NET Video Tutorial Series Structure Union1.The keywordstruct is used to define a structure 1. The keyword union is used to define a union. 2. When a variable is associated with a structure, the compiler allocates the memory for each member. The size of structure is greater than or equal to the sum ofsizes of its members. The smaller members may end with unused slack bytes. 2. When a variable is associated with a union, thecompiler allocates thememory by considering the size of the largest memory. So, size of union is equal to the size of largest member. 3. Each member within a structure is assigned unique storage area of location. 3. Memory allocated is shared by individual members of union. 4. The address of each member will be in ascending order This indicates that memory for each member will start at different offset v…

Difference between Linear search and Binary Search in c language

SQL Video Channel : Download all SQL Video



Binary Search Linear Search Works only on sorted items. such as  1,2,3,4,5,6  etc
Works on sorted as well as unsorted items. 12,4,5,3,2,1 etc Very efficient if the items are sorted Very efficient if the items are less and present in the beginning of the list. such as Suppose your list items are : 12,3,4,5,1 and you want to search 12 number then you get beginning in the list. Works well with arrays and not on linked lists. Works with arrays and linked lists.
Number of comparisons are less More number of comparisons are required if the items are present in the later part of the array or its elements are more.

Memory representation of Linked List Data Structures in C Language

Memory representation of Linked List

             In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.

               Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:


      Suppose next node is allocated at an address 506, so the list becomes,



  Suppose next node is allocated with an address with an address 10,s the list become,


The other way to represent the linked list is as shown below:




 In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of next node. The last node …